Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 34

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Quantitative visualization of a radioactive plume with harmonizing gamma-ray imaging spectrometry and real-time atmospheric dispersion simulation based on 3D wind observation

Nagai, Haruyasu; Furuta, Yoshihiro*; Nakayama, Hiromasa; Satoh, Daiki

Journal of Nuclear Science and Technology, 60(11), p.1345 - 1360, 2023/11

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

A novel monitoring method for the quantitative visualization of 3D distribution of a radioactive plume and source term estimation of released radionuclides is proposed and its feasibility is demonstrated by preliminary test. The proposed method is the combination of gamma-ray imaging spectroscopy with the Electron Tracking Compton Camera (ETCC) and real-time high-resolution atmospheric dispersion simulation based on 3D wind observation with Doppler lidar. The 3D distribution of a specific radionuclide in a target radioactive plume is inversely reconstructed from line gamma-ray images from each radionuclide by several ETCCs located around the target by harmonizing with the air concentration distribution pattern of the plume predicted by real-time atmospheric dispersion simulation. A prototype of the analysis method was developed, showing a sufficient performance in several test cases using hypothetical data generated by numerical simulations of atmospheric dispersion and radiation transport.

JAEA Reports

Consideration on utilization of atmospheric dispersion models for a nuclear emergency preparedness and response

Togawa, Orihiko; Okura, Takehisa; Kimura, Masanori; Nagai, Haruyasu

JAEA-Review 2021-021, 61 Pages, 2021/11

JAEA-Review-2021-021.pdf:3.72MB

Triggered by the Fukushima Daiichi Nuclear Power Station accident, there have been a lot of arguments among various situations and levels about utilization of atmospheric dispersion models for a nuclear emergency preparedness and response. Most of these arguments, however, were alternative and extreme discussions on whether predictions by computational models could be applied or not for protective measures in a nuclear emergency, and it was hard to say that these arguments were politely conducted, based on scientific verification in an emergency response. It was known, on the other hand, that there were not a few potential users of atmospheric dispersion models and/or calculation results by the models within the Japan Atomic Energy Agency (JAEA) and outside. However, they seemed to have a lack of understanding and a misunderstanding on proper use of different kinds of atmospheric dispersion models. This report compares an outline of models and calculation method in atmospheric dispersion models for a nuclear emergency preparedness and response, with a central focus on the models which have been developed and used in the JAEA. Examples of calculations by these models are also described in the report. This report aims at contributing to future consideration and activities for potential users of atmospheric dispersion models within the JAEA and outside.

Journal Articles

A Model intercomparison of atmospheric $$^{137}$$Cs concentrations from the Fukushima Daiichi Nuclear Power Plant accident, phase III; Simulation with an identical source term and meteorological field at 1-km resolution

Sato, Yosuke*; Sekiyama, Tsuyoshi*; Fang, S.*; Kajino, Mizuo*; Qu$'e$rel, A.*; Qu$'e$lo, D.*; Kondo, Hiroaki*; Terada, Hiroaki; Kadowaki, Masanao; Takigawa, Masayuki*; et al.

Atmospheric Environment; X (Internet), 7, p.100086_1 - 100086_12, 2020/10

The third model intercomparison project for investigating the atmospheric behavior of $$^{137}$$Cs emitted during the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident (FDNPP-MIP) was conducted. A finer horizontal grid spacing (1 km) was used than in the previous FDNPP-MIP. Nine of the models used in the previous FDNPP-MIP were also used, and all models used identical source terms and meteorological fields. Our analyses indicated that most of the observed high atmospheric $$^{137}$$Cs concentrations were well simulated, and the good performance of some models improved the performance of the multi-model ensemble. The analyses also confirmed that the use of a finer grid resolution resulted in the meteorological field near FDNPP being better reproduced. The good representation of the wind field resulted in the reasonable simulation of the narrow distribution of high deposition amount to the northwest of FDNPP and the reduction of the overestimation over the area to the south of FDNPP. In contrast, the performance of the models in simulating plumes observed over the Nakadori area, the northern part of Gunma, and the Tokyo metropolitan area was slightly worse.

JAEA Reports

Development of measurement system of radioactive plume using unmanned airplane in the fiscal year 2018 (Contract research)

Sanada, Yukihisa; Ochi, Kotaro; Ishizaki, Azusa

JAEA-Research 2020-006, 60 Pages, 2020/07

JAEA-Research-2020-006.pdf:4.84MB

At the accident of nuclear facilities, a prediction of the behavior of released radioactive plume is indispensable to make a decision on a refuge plan of inhabitants. Currently, prediction system which is based on atmospheric dispersion simulation has been implemented as a tool of the atomic energy disaster prevention. However, the direct measurement method of the radioactive plume has not existed. In this study, some component technologies were developed for the establishment of direct measurement methods of radioactive plume using unmanned aerial vehicle whose technological innovation is remarkable. In addition, the spray test using mock aerosol was conducted to obtaining the deposition rate to the airplane body. The algorism of making a flight plan was developed based on a prediction model of the radioactive plume. This report summarized the outcome of the last year of the three-year plan.

Journal Articles

Atmospheric-dispersion database system that can immediately provide calculation results for various source term and meteorological conditions

Terada, Hiroaki; Nagai, Haruyasu; Tanaka, Atsunori*; Tsuzuki, Katsunori; Kadowaki, Masanao

Journal of Nuclear Science and Technology, 57(6), p.745 - 754, 2020/06

 Times Cited Count:9 Percentile:75.92(Nuclear Science & Technology)

We have estimated source term and analyzed processes of atmospheric dispersion of radioactive materials released during the Fukushima Daiichi Nuclear Power Station (FDNPS) accident by the Worldwide version of System for Environmental Emergency Dose Information. On the basis of this experience, we developed an dispersion calculation method that can respond to various needs in a nuclear emergency and provide useful information for emergency-response planning. By this method, if a release point is known, it is possible to immediately obtain the prediction results by applying provided source term to the database of dispersion-calculation results prepared in advance. With this function, it is easy to compare results by applying various source term with monitoring data, and to find out the optimum source term, which was applied for the source term estimation of the FDNPS accident. By performing this calculation with past meteorological-analysis data, it is possible to immediately get dispersion-calculation results for various source term and meteorological conditions. This database can be used for pre-accident planning, such as optimization of a monitoring plan and understanding of events to be supposed in considering emergency countermeasures.

Journal Articles

Reconstruction of residents' thyroid equivalent doses from internal radionuclides after the Fukushima Daiichi Nuclear Power Station accident

Oba, Takashi*; Ishikawa, Tetsuo*; Nagai, Haruyasu; Tokonami, Shinji*; Hasegawa, Arifumi*; Suzuki, Gen*

Scientific Reports (Internet), 10(1), p.3639_1 - 3639_11, 2020/02

 Times Cited Count:18 Percentile:83.61(Multidisciplinary Sciences)

Internal doses of residents after the Fukushima Daiichi Nuclear Power Station accident have been reconstructed. In total 896 behaviour records in the Fukushima Health Management Survey were analysed to estimate thyroid doses via inhalation, using a spatiotemporal radionuclides concentration database constructed by atmospheric dispersion simulations. After a decontamination factor for sheltering and a modifying factor for the dose coefficient were applied, estimated thyroid doses were close to those estimated on the basis of direct thyroid measurement. The median and 95th percentile of thyroid doses of 1-year-old children ranged from 1.2 to 15 mSv and from 7.5 to 30 mSv, respectively.

Journal Articles

Dispersion modelling of radioactive materials

Nagai, Haruyasu; Yamazawa, Hiromi*

Environmental Contamination from the Fukushima Nuclear Disaster; Dispersion, Monitoring, Mitigation and Lessons Learned, p.230 - 242, 2019/08

An overview of SPEEDI is provided in the context of it development, functions, and role in the framework of nuclear emergency management. Thereafter, we examine how it was used and how it should be used for the Fukushima Daiichi Nuclear Power Station accident from a system developer perspective. We believe that our review can provide lessons or tasks for improving the prediction system and for considering better utilization of the system; it is also beneficial to consider reconstructing the framework of nuclear emergency management. Furthermore, we hope this review will prove useful in understanding and effectively using the atmospheric dispersion predictions from the system in the case of a similar accident in the future.

JAEA Reports

Development of measurement system of radioactive plume using unmanned airplane in the fiscal year 2017 (Contract research)

Sanada, Yukihisa; Nishizawa, Yukiyasu*; Ochi, Kotaro; Yuki, Yoichi*; Ishizaki, Azusa; Osada, Naoyuki*

JAEA-Research 2018-009, 48 Pages, 2019/01

JAEA-Research-2018-009.pdf:14.77MB

At the accident of nuclear facilities, a prediction of the behavior of released radioactive plume is indispensable to make a decision on a refuge plan of inhabitants. Currently, prediction system which is based on atmospheric dispersion simulation has been implemented as a tool of the atomic energy disaster prevention. However, the direct measurement method of the radioactive plume has not existed. In this study, some component technologies were developed for the establishment of direct measurement methods of radioactive plume using unmanned aerial vehicle whose technological innovation is remarkable. In addition, the spray test using mock aerosol was conducted to obtaining the deposition rate to the airplane body. The algorism of making a flight plan was developed based on a prediction model of the radioactive plume. This report summarized the outcome of the second year of the three-year plan.

Journal Articles

Estimation of environmental releases of radioactive materials

Chino, Masamichi*; Nagai, Haruyasu

Environmental Contamination from the Fukushima Nuclear Disaster; Dispersion, Monitoring, Mitigation and Lessons Learned, p.50 - 61, 2019/00

 Times Cited Count:8 Percentile:82.45(Environmental Sciences)

Temporal variations in the amount of radionuclides released into the atmosphere during the Fukushima Daiichi Nuclear Power Station accident and their atmospheric dispersion are essential to evaluate the environmental impacts and resultant radiological doses to the public. We have estimated the atmospheric releases during the accident by comparing measurements with calculations by atmospheric deposition model. UNSCEAR compared several estimated source terms and used our source term for estimating levels of radioactive material in the terrestrial environment and doses to the public. To improve our source term, we recently made detailed source term estimation by using additional monitoring data and WSPEEDI including new deposition scheme.

Journal Articles

Atmospheric modeling of $$^{137}$$Cs plumes from the Fukushima Daiichi Nuclear Power Plant; Evaluation of the model intercomparison data of the Science Council of Japan

Kitayama, Kyo*; Morino, Yu*; Takigawa, Masayuki*; Nakajima, Teruyuki*; Hayami, Hiroshi*; Nagai, Haruyasu; Terada, Hiroaki; Saito, Kazuo*; Shimbori, Toshiki*; Kajino, Mizuo*; et al.

Journal of Geophysical Research; Atmospheres, 123(14), p.7754 - 7770, 2018/07

 Times Cited Count:25 Percentile:69.81(Meteorology & Atmospheric Sciences)

We compared seven atmospheric transport model results for $$^{137}$$Cs released during the Fukushima Daiichi Nuclear Power Plant accident. All the results had been submitted for a model intercomparison project of the Science Council of Japan in 2014. We assessed model performance by comparing model results with observed hourly atmospheric concentrations of $$^{137}$$Cs, focusing on nine plumes over the Tohoku and Kanto regions. The results showed that model performance for $$^{137}$$Cs concentrations was highly variable among models and plumes. We also assessed model performance for accumulated $$^{137}$$Cs deposition. Simulated areas of high deposition were consistent with the plume pathways, though the models that best simulated $$^{137}$$Cs concentrations were different from those that best simulated deposition. The ensemble mean of all models consistently reproduced $$^{137}$$Cs concentrations and deposition well, suggesting that use of a multimodel ensemble results in more effective and consistent model performance.

JAEA Reports

Development of a calculation method for atmospheric dispersion database that can immediately provide calculation results for any source term and period from hindcast to short-term forecast (Joint research)

Terada, Hiroaki; Tsuzuki, Katsunori; Kadowaki, Masanao; Nagai, Haruyasu; Tanaka, Atsunori*

JAEA-Data/Code 2017-013, 31 Pages, 2018/01

JAEA-Data-Code-2017-013.pdf:9.52MB

We developed an atmospheric dispersion calculation method that can respond to various needs for dispersion prediction in nuclear emergency and prepare database of information useful for planning of emergency response. In this method, it is possible to immediately get the prediction results for provided source term by creating a database of dispersion calculation results without specifying radionuclides, release rate and period except release point. By performing this calculation steadily along with meteorological data update, it is possible to immediately get calculation results for any source term and period from hindcast to short-term forecast. This function can be used for pre-accident planning such as optimization of monitoring plan and understanding events to be supposed for emergency response. Spatiotemporal distribution of radioactive materials reproduced by source term estimated inversely from monitoring based on this method is useful as a supplement to monitoring.

Journal Articles

Oceanic dispersion of Fukushima-derived Cs-137 simulated by multiple oceanic general circulation models

Kawamura, Hideyuki; Furuno, Akiko; Kobayashi, Takuya; In, Teiji*; Nakayama, Tomoharu*; Ishikawa, Yoichi*; Miyazawa, Yasumasa*; Usui, Norihisa*

Journal of Environmental Radioactivity, 180, p.36 - 58, 2017/12

 Times Cited Count:11 Percentile:35.55(Environmental Sciences)

This study simulates the oceanic dispersion of Fukushima-derived Cs-137 by an oceanic dispersion model and multiple oceanic general circulation models. The models relatively well reproduced the observed Cs-137 concentrations in the coastal, offshore, and open oceans. Multiple simulations in the coastal, offshore, and open oceans consistently suggested that Cs-137 dispersed along the coast in the north-south direction during the first few months post-disaster, and were subsequently dispersed offshore by the Kuroshio Current and Kuroshio Extension. Quantification of the Cs-137 amounts suggested that Cs-137 actively dispersed from the coastal and offshore oceans to the open ocean, and from the surface layer to the deeper layers in the North Pacific.

JAEA Reports

Local-scale high-resolution atmospheric dispersion model using large-eddy simulation; LOHDIM-LES

Nakayama, Hiromasa; Nagai, Haruyasu

JAEA-Data/Code 2015-026, 37 Pages, 2016/03

JAEA-Data-Code-2015-026.pdf:2.48MB

We developed LOcal-scale High-resolution atmospheric DIspersion Model using Large-Eddy Simulation (LOHDIM-LES). This dispersion model is designed based on LES which is effective to reproduce unsteady behaviors of turbulent flows and plume dispersion. The basic equations are the continuity equation, the Navier-Stokes equation, and the scalar conservation equation. Buildings and local terrain variability are resolved by high-resolution grids with of a few meters and these turbulent effects are represented by immersed boundary method. In simulating atmospheric turbulence, boundary layer flows are generated by a recycling turbulent inflow technique in a driver region set up at the upstream of the main analysis region. This turbulent inflow data are imposed at the inlet of the main analysis region. By this approach, the LOHDIM-LES can provide detailed information on wind velocities and plume concentration in the investigated area.

Journal Articles

Development of a long-range atmospheric transport model for nuclear emergency and its application to the Chernobyl nuclear accident

Terada, Hiroaki; Chino, Masamichi

Proceedings of 2nd International Conference on Radioactivity in the Environment, p.15 - 18, 2005/10

The previous version of Worldwide version of System for Prediction of Environmental Emergency Dose Information (WSPEEDI) has been composed of mass-consistent wind field model WSYNOP and particle dispersion model GEARN. Because WSYNOP has no capability to predict meteorological fields, its accuracy and resolution depends on meteorological input data, and it is impossible to treat physical processes realistically. To improve these problems, an atmospheric dynamic model MM5 is introduced and applied to the Chernobyl accident for the verification. Two calculation cases are conducted, CASE-1 a calculation for European region Domain-1, and CASE-2 a domain nesting calculation for Domain-1 and the region around Chernobyl Domain-2. The air concentration and surface deposition of $$^{137}$$Cs calculated by CASE-1 agree well with the measurements by statistical analysis and comparison for the horizontal distribution. In the result of CASE-2, the detailed distribution of surface $$^{137}$$Cs deposition around Chernobyl which was impossible to calculate in CASE-1 is predicted with high accuracy.

Journal Articles

Improvement of Worldwide version of System for Prediction of Environmental Emergency Dose Information (WSPEEDI), 2; Evaluation of numerical models by $$^{137}$$Cs deposition due to the Chernobyl nuclear accident

Terada, Hiroaki; Chino, Masamichi

Journal of Nuclear Science and Technology, 42(7), p.651 - 660, 2005/07

 Times Cited Count:18 Percentile:74.92(Nuclear Science & Technology)

The prediction performance of WSPEEDI (Worldwide version of System for Prediction of Environmental Emergency Dose Information), which consists of the atmospheric dynamic model MM5 and the Lagrangian particle dispersion model GEARN-new, is evaluated by measurements of precipitation and surface deposition of $$^{137}$$Cs over Europe during the Chernobyl accident. It is concluded that MM5/GEARN-new can predict $$^{137}$$Cs deposition distribution with good accuracy when accurate precipitation is predicted by using a explicit scheme on cloud microphysics with ice phase processes. High-resolutional calculation is also conducted for the area surrounding Chernobyl by a nesting method. MM5/GEARN-new can predict quite a realistic distribution of $$^{137}$$Cs deposition around Chernobyl which was not calculated by the previous version.

Journal Articles

Real-time simulation and analysis on long-range atmospheric dispersions of volcanic gases discharged from the Miyake Island

Furuno, Akiko; Nagai, Haruyasu; Umeyama, Nobuaki; Chino, Masamichi

Taiki Kankyo Gakkai-Shi, 37(1), p.23 - 34, 2002/01

The active volcano Oyama in the Miyake Island has been emitting a huge amount of volcanic gases since the first eruption in July 2000. High concentrations of SO2 gas originated in Oyama frequently appear in the wide area from the northeast to the west part of Honshu, Japan. This paper describes real-time prediction of SO2 dispersion covering the Tokai and Kanto District and its verification by comparing with SO2 observation data from October to November 2000. Atmospheric dispersions of SO2 are calculated by using our software system that combines a regional atmospheric dynamic model and a particle random walk model. It was proved that the real-time prediction of our system has adequate precision. The importance of including the effect of wet deposition was also shown. The release amounts estimated from the comparison between the calculation result and the monitoring data are 20,000 - 50,000 ton/day, which is consistent to measured ones at the Miyake Island.

JAEA Reports

Atmospheric dispersion simulations of volcanic gas from Miyake Island by SPEEDI

Nagai, Haruyasu; Furuno, Akiko; Terada, Hiroaki; Umeyama, Nobuaki; Yamazawa, Hiromi; Chino, Masamichi

JAERI-Research 2001-012, 28 Pages, 2001/03

JAERI-Research-2001-012.pdf:1.77MB

Japan Atomic Energy Research Institute is advancing the study for prediction of material circulation in the environment to cope with environmental pollution, based on SPEEDI (System for Prediction of Environmental Emergency Dose Information) and WSPEEDI (Worldwide version of SPEEDI), which are originally developed aiming at real-time prediction of atmospheric dispersion of radioactive substances accidentally released from nuclear facility. As a part of this study, dispersion simulation of volcanic gas erupted from Miyake Island is put into practice. After the stench incident at the west Kanto District on 28 August 2000 caused by volcanic gas from Miyake Island, simulations dealing with atmospheric dispersion of volcanic gas from Miyake Island have been carried out. This report describes the details of these studies.

Journal Articles

WSPEEDI: Worldwide version of System for Prediction of Environmental Emergency Dose Information

Chino, Masamichi; Yamazawa, Hiromi; Nagai, Haruyasu; Furuno, Akiko

Mathematics and Computation, Reactor Physics and Environmental Analysis in Nuclear Applications, 1, p.1521 - 1529, 1999/00

no abstracts in English

Journal Articles

Simulations of atmospheric dispersion in the existance of internal boundary layer by a three-layers model

; ;

Taiki Osen Gakkai-Shi, 20(3), p.158 - 167, 1985/00

no abstracts in English

Oral presentation

Updating source term and an atmospheric transport, dispersion and deposition model, WSPEEDI

Nagai, Haruyasu; Terada, Hiroaki; Tsuzuki, Katsunori; Ota, Masakazu; Furuno, Akiko; Akari, Shusaku; Katata, Genki

no journal, , 

In order to assess the radiological dose to the public resulting from the Fukushima Daiichi Nuclear Power Station accident in Japan, the spatial and temporal distribution of radioactive materials in the environment are reconstructed by computer simulations. In this study, by refining the source term of radioactive materials discharged into the atmosphere and modifying the atmospheric dispersion model, the atmospheric dispersion simulation of radioactive materials is improved. Then, a database of spatiotemporal distribution of radioactive materials in the air and on the ground surface is developed from the output of the simulation, and is used for the dose assessment by coupling with the behavioral pattern of evacuees from the nuclear accident. In this year, (1) investigation of the source term, (2) improvement of atmospheric dispersion simulation, and (3) acquisition and organization of measured data have been conducted.

34 (Records 1-20 displayed on this page)